Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Bin Zhao,^{a,b}* Hua Cao,^b Yong-Jun Xu,^a Pan-Long Yang^b and Yan-Li Liu^b

^aFaculty of Chemical Biotechnology, Dongguan University, Guangdong 523808, People's Republic of China, and ^bDepartment of Organic Chemistry, The College of Chemistry, Xiangtan University, Hunan 411105, People's Republic of China

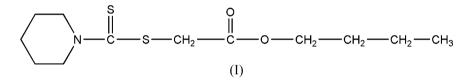
Correspondence e-mail: zhaohbhanlf@163.com

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.005 Å R factor = 0.049 wR factor = 0.138 Data-to-parameter ratio = 17.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography All rights reserved


Butyl 2-(piperidine-1-carbothioylsulfanyl)acetate

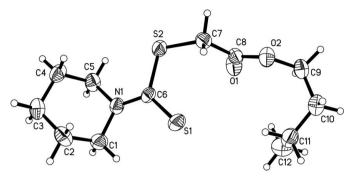
In the title molecule, $C_{12}H_{21}NO_2S_2$, the piperidine ring adopts a chair conformation. In the crystal structure, an intermolecular $C-H\cdots S$ hydrogen bond contributes to the stability.

Received 10 January 2007 Accepted 17 January 2007

Comment

Substituted piperidines are an important class of compounds, existing as subunits in a number of biologically active compounds (Takemoto *et al.*, 1999; Nishi *et al.*, 1998). A large number of substituted piperidine derivatives have been synthesized and investigated (Chambers *et al.*, 1992). The title compound, (I), has been prepared and its crystal structure is reported here.

The bond lengths and angles are within normal ranges (Allen *et al.*, 1987) and comparable with those in a related compound, acetonyl morpholine-4-carbodithioate, (II) (Wan *et al.*, 2005). However, the side chain in (II) is oriented differently from the side chain in (I), with respect to the sixmembered ring.


The piperidine ring adopts a chair conformation (Fig. 1). Atoms N1, C6, S1 and S2 are coplanar (plane p1), with a maximum deviation of 0.004 (2) Å for atom C6. Atoms C7, C8, O1 and O2 are essentially coplanar (plane p2), with a maximum deviation of 0.013 (2) Å for atom C8. The dihedral angles between p1 and p2 and atoms N1/C1/C3/C4 of the piperidine ring are 88.62 (9) and 42.04 (8)°, respectively.

There are four intramolecular hydrogen bonds (Table 1), each forming a five-membered ring. An intermolecular $C-H \cdots S$ hydrogen bond contributes to the stability of the crystal structure (Fig. 2).

Experimental

Sodium piperidine-1-carbodithioate (3.66 g, 0.02 mol) and butyl 2chloroacetate (3.00 g, 0.02 mol) were dissolved in ethanol (50 ml), and the mixture was stirred for 5 h at about 273 K. The solution was then filtered and the filtrate was evaporated under reduced pressure to give the product (yield 88%). Analysis found: C 52.36, H 7.68, N 5.11%; $C_{12}H_{21}NO_2S_2$ requires: C 55.33, H 7.68, N 5.09%. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

organic papers

Figure 1

The molecular structure of (I), showing the atom-labeling scheme and 30% probability displacement ellipsoids.

Z = 4

 $D_r = 1.286 \text{ Mg m}^{-3}$

 $0.36 \times 0.24 \times 0.08 \; \text{mm}$

8173 measured reflections

2769 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0833P)^2]$

+ 0.0758P] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.30 ~{\rm e}~{\rm \AA}^{-3} \end{array}$

1953 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.37 \text{ mm}^{-1}$

T = 273 (2) K Plate, colorless

 $R_{\rm int} = 0.026$ $\theta_{\rm max} = 26.1^\circ$

Crystal data

 $C_{12}H_{21}NO_2S_2$ $M_r = 275.42$ Monoclinic, $P2_1/n$ a = 6.504 (3) Å b = 24.123 (12) Å c = 9.506 (5) Å $\beta = 107.513$ (7)° V = 1422.3 (12) Å³

Data collection

Bruker SMART APEX CCD diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS* in *SAINT-Plus*; Bruker, 2003) $T_{min} = 0.879, T_{max} = 0.972$

Refinement

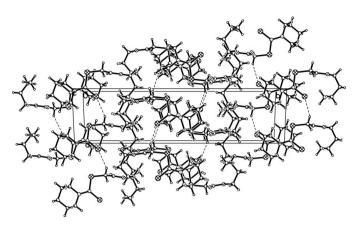

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.138$ S = 1.022769 reflections 155 parameters H-atom parameters constrained

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1A\cdots S1$	0.97	2.59	3.080 (3)	112
$C5-H5B\cdots S2$	0.97	2.38	2.914 (3)	114
$C7 - H7B \cdot \cdot \cdot S1$	0.97	2.62	3.056 (3)	108
C9−H9B···O1	0.97	2.32	2.735 (4)	105
$C7-H7A\cdots S1^{i}$	0.97	2.95	3.823 (3)	151

Symmetry code: (i) x - 1, y, z.

Figure 2

The crystal packing, viewed approximately down the *c* axis, showing the intermolecular $C-H \cdots S$ hydrogen bonds (dashed lines).

H atoms were placed in calculated positions (C–H = 0.97 or 0.98 Å) and refined in riding mode, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl and 1.2 for all other H atoms.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

This work is supported by the National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Changchun, China.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SMART. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT-Plus. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.

Chambers, M. S., Baker, R., Billington, D. C., Knight, A. K., Middlemiss, D. N. & Wong, E. H. F. (1992). J. Med. Chem. 35, 2033–2039.

Nishi, T., Nakajima, K., Iio, Y., Ishibashi, K. & Fukazawa, T. (1998). *Tetrahedron Asymmetry*, 9, 2567–2570.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Takemoto, T., Nakajima, K., Iio, Y., Tamura, M. & Nishi, T. (1999). Tetrahedron Asymmetry, 10, 1787–1793.

Wan, J., Li, C.-L., Li, X.-M. & Zhang, S.-S. (2005). Acta Cryst. E61, o2426– o2427.